Telegram Group & Telegram Channel
🚀 Compressive Transformer на PyTorch — открытая реализация одной из самых загадочных архитектур ИИ!

Если ты работаешь с длинными последовательностями (NLP, музыка, временные ряды), то стандартного Transformer'а уже может быть недостаточно. Здесь на сцену выходит Compressive Transformer — и теперь его можно изучать и запускать на PyTorch благодаря открытому проекту:
🔗 http://k-a.in/pyt-comptr.html

🧠 В чём суть?

Compressive Transformer — это эволюция стандартного Transformer. Он не просто "запоминает" предыдущие токены, он сжимает память, позволяя сохранять ещё более дальний контекст без потери производительности. Это делает модель особенно ценной в задачах, где важно помнить, что происходило «много шагов назад».

📦 Что ты найдешь в проекте?

🔹 Полную реализацию на PyTorch, без зависимости от TensorFlow или сторонних обвязок
🔹 Механизм памяти с компрессией, который реально работает
🔹 Поддержка обучения и инференса на длинных последовательностях
🔹 Отличная база для экспериментов и исследований

🛠 Зачем это нужно?

• Чат-боты, которые не забывают, что ты писал 20 сообщений назад
• Генерация музыки, где важна глобальная структура
• Анализ логов и временных рядов, где значение имеет не только локальный, но и глобальный контекст

📚 Исходная архитектура была представлена DeepMind, но готовых репозиториев до сих пор крайне мало. Эта реализация — редкая возможность попробовать Compressive Transformer вживую.

👉 http://k-a.in/pyt-comptr.html



tg-me.com/machinelearning_interview/1799
Create:
Last Update:

🚀 Compressive Transformer на PyTorch — открытая реализация одной из самых загадочных архитектур ИИ!

Если ты работаешь с длинными последовательностями (NLP, музыка, временные ряды), то стандартного Transformer'а уже может быть недостаточно. Здесь на сцену выходит Compressive Transformer — и теперь его можно изучать и запускать на PyTorch благодаря открытому проекту:
🔗 http://k-a.in/pyt-comptr.html

🧠 В чём суть?

Compressive Transformer — это эволюция стандартного Transformer. Он не просто "запоминает" предыдущие токены, он сжимает память, позволяя сохранять ещё более дальний контекст без потери производительности. Это делает модель особенно ценной в задачах, где важно помнить, что происходило «много шагов назад».

📦 Что ты найдешь в проекте?

🔹 Полную реализацию на PyTorch, без зависимости от TensorFlow или сторонних обвязок
🔹 Механизм памяти с компрессией, который реально работает
🔹 Поддержка обучения и инференса на длинных последовательностях
🔹 Отличная база для экспериментов и исследований

🛠 Зачем это нужно?

• Чат-боты, которые не забывают, что ты писал 20 сообщений назад
• Генерация музыки, где важна глобальная структура
• Анализ логов и временных рядов, где значение имеет не только локальный, но и глобальный контекст

📚 Исходная архитектура была представлена DeepMind, но готовых репозиториев до сих пор крайне мало. Эта реализация — редкая возможность попробовать Compressive Transformer вживую.

👉 http://k-a.in/pyt-comptr.html

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/machinelearning_interview/1799

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

Machine learning Interview from tr


Telegram Machine learning Interview
FROM USA